Схема светодиодной лампы: устройство простейших драйверов

Содержание

Главные враги светодиодов любого типа – перегрев и деградация

Светодиоды имеют весомый недостаток – они очень маленькие. И даже при колоссальном соотношении потребляемого тока и светоотдачи их придется использовать как минимум в количестве нескольких штук рядом, для того чтобы добиться необходимой яркости. Близкое расположение кристаллов друг к другу сильно влияет на их теплоотвод, они перегреваются и выгорают один за другим. LCD-диоды лишены такой проблемы.

Деградация светодиодов может быть вызвана как перегревом, так и длительным сроком эксплуатации даже с отличным теплоотводом. Со временем они начинают тускнеть при потреблении все того же электричества (при воздействии высоких температур это происходит быстрее). Качественные лампочки спустя несколько лет регулярного использования теряют до 30% яркости, у безымянных «китайцев» этот параметр может доходить до 60%.

Схема светодиодной лампы: устройство простейших драйверовПримерный график деградации

Что такое диммируемый драйвер для световых диодов

Диммируемым называется драйвер для светодиодного светильника, поддерживающий изменение входных параметров тока и способный в зависимости от этого изменять выходные. Эти достигается изменение интенсивности свечения LED-излучателей. Примером может послужить контроллер для светодиодной ленты с дистанционным управлением. При желании появляется возможность «приглушить» освещение в помещении, дать отдохнуть глазам. Так же это уместно, если в комнате спит ребенок.

Таким устройством осуществляется диммирование

Диммирование выполняется с ПДУ, или со штатного механического бесступенчатого переключателя.

Светодиодные ленты — подключение от блока питания или драйвера?

Отдельный вопрос это светодиодные ленты. Для них вовсе не нужны драйвера, и как известно они подключаются от привычных нам блоков питания 12-36 Вольт.Схема светодиодной лампы: устройство простейших драйверов

Казалось бы в чем подвох? Там же тоже стоят светодиоды.

А дело в том, что драйвер уже автоматически присутствует в самой ленте.

Все вы видели на светодиодных лентах впаянные сопротивления (резисторы).Схема светодиодной лампы: устройство простейших драйверов

Они как раз таки и отвечают за ограничение тока до номинальной величины. Одно сопротивление устанавливается на три последовательно подключенных светодиода.Схема светодиодной лампы: устройство простейших драйверов

Такие участки ленты, рассчитанные на напряжение 12 Вольт называют кластерами. Эти отдельные кластеры на всем протяжении ленты подключены между собой в параллель.Схема светодиодной лампы: устройство простейших драйверов

И именно благодаря такому параллельному соединению, на все светодиоды подается одинаковое напряжение 12В. Благодаря кластеризации при монтаже низковольтной ленты, ее спокойно можно отрезать на мелкие кусочки, состоящие минимум из 3-х светодиодов.

Казалось бы, решение найдено и где здесь недостаток? А главный недостаток такого устройства — эти резисторы не проделывают никакой полезной работы.

Они лишь дополнительно нагревают окружающее пространство и сам светодиод возле него. Именно поэтому светодиодные ленты не светят так ярко, как нам хотелось бы. Вследствие чего, их используют лишь как дополнительный свет интерьера.

Сравните 60-70 люмен/ватт у светодиодных лент, против 120-140 лм/вт у светильников и решений на основе драйверов.

Возникает вопрос, а можно ли найти ленту без сопротивлений и подключить к ней драйвер отдельно? Да, такие устройства например применяют в светодиодных панелях.Схема светодиодной лампы: устройство простейших драйверов

Их часто монтируют в подвесном потолке и не только. Применяются они без сопротивлений. Еще их называют токовыми светодиодными линейками.Схема светодиодной лампы: устройство простейших драйверов

Именно токовыми. Здесь все отдельные участки линеек подключаются последовательно на один драйвер. И все прекрасно работает.

https://youtube.com/watch?v=DMlBMcQPvtM

Зачем драйвер светодиодным лампам?

Светодиоды, по сравнению с лампами накаливания, гораздо энергоэффективнее и долговечнее. Они могут работать годами и потребляют в разы меньше электроэнергии, чем обычные лампочки, при стабильном электропитании, за которое и отвечает драйвер.

Светодиоды очень чувствительны к питанию, поступающему на их входы. Пониженных значений они не боятся, а вот повышенные напряжения и токи могут не только существенно убавить ресурс полупроводников, но и вывести их из строя. Задача драйвера – обеспечение светодиодов стабильным током.

Драйвер для светодиодных ламп – источник питания. Он представляет собой электронную схему, на выходе которой оказывается постоянный ток заданной величины.

Светодиодные драйверы, предлагаемые производителями, рассчитаны на напряжения 10, 12, 24, 220 В и постоянные токи 350 мА, 700 мА, 1 А. Обычно драйверы делают под конкретные светильники, но есть в продаже и универсальные приборы, которые подходят к большинству LED-элементов от известных брендов.

Стабилизаторы тока используются в:

  • системах уличного и домашнего освещения;
  • настольных офисных светильниках;
  • светодиодных лентах и декоративной подсветке.

С помощью драйверов изменяют величину яркости и цвет светодиодов. Это делается с помощью регуляторов или пульта дистанционного управления. Светодиодная лампа без драйвера работает нестабильно и рискует быстро выйти из строя.

Как устроена светодиодная лампа?

Близкое знакомство с конструкцией LED-светильника может потребоваться только в одном случае – если необходимо отремонтировать или усовершенствовать источник света.

Домашние умельцы, имея на руках комплект элементов, могут самостоятельно собрать лампу на светодиодах, но новичку это не по силам.

Схема светодиодной лампы: устройство простейших драйверов
Учитывая, что приборы со светодиодами стали основой систем освещения современных квартир, умение разбираться в устройстве ламп и ремонтировать их может сохранить весомую часть семейного бюджета

Зато, изучив схему и имея элементарные навыки работы с электроникой, даже новичок сможет разобрать лампу, заменить сломанные детали, восстановив функциональность прибора. Чтобы ознакомиться с подробными инструкциями по выявлению поломки и самостоятельному ремонту светодиодной лампы, переходите, пожалуйста, по этой ссылке.

Имеет ли смысл ремонт LED-лампы? Безусловно. В отличие от аналогов с нитью накаливания по 10 рублей за штуку, светодиодные устройства стоят дорого.

Предположим, «груша» GAUSS – около 80 рублей, а более качественная альтернатива OSRAM – 120 рублей. Замена конденсатора, резистора или диода обойдется дешевле, да и срок службы лампы своевременной заменой можно продлить.

Существует множество модификаций LED-ламп: свечи, груши, шары, софиты, капсулы, ленты и др. Они отличаются формой, размером и конструкцией. Чтобы наглядно увидеть отличие от лампы накаливания, рассмотрим распространенную модель в форме груши.

Схема светодиодной лампы: устройство простейших драйверов
Вместо стеклянной колбы – матовый рассеиватель, нить накала заменили «долгоиграющие» диоды на плате, лишнее тепло отводит радиатор, а стабильность напряжения обеспечивает драйвер

Если отвлечься от привычной формы, можно заметить только один знакомый элемент – цоколь. Размерный ряд цоколей остался прежним, поэтому они подходят к традиционным патронам и не требуют смены электросистемы. Но на этом сходство заканчивается: внутреннее устройство светодиодных приборов намного сложнее, чем у ламп накаливания.

LED-лампы не предназначены для работы напрямую от сети 220 В, поэтому внутри устройства заключен драйвер, являющийся одновременно блоком питания и управления. Он состоит из множества мелких элементов, основная задача которых – выпрямить ток и снизить напряжение.

Простейшая схема устройства светодиодной лампы 220 В

Максимально простая схема для светодиодной лампы, подключаемой к сети 220 В, включает драйвер, состоящий из двух гасящих резисторов, стабилизирующих напряжение. Подключение LED-диодов происходит в разных направлениях, что гарантирует идеальную защиту от обратного напряжения. В таком случае частота мерцания увеличивается с 50 до 100 Гц.

К примеру, для подключения светодиодной ленты к цоколю припаиваются два провода. Концы этих проводов впоследствии соединяют с концами светодиодной ленты. Электрическая цепь плюсового провода включает конденсатор с параллельно подключенным резистором и проходит через положительную часть диодного моста, а цепь минусового провода — резистор и соединяется с отрицательной частью диодного моста. Между диодным мостом и светодиодной лентой устанавливают второй блок «конденсатор-резистор», подключаемый к обоим проводам.

Проще говоря, питающее напряжение проходит через ограничительный конденсатор и поступает на диодный мост, а оттуда — на светодиодные элементы. Заменив светодиод на выпрямительный диод, вы в два раза не увеличите, а понизите напряжение — с 50 до 25 Гц. При таком раскладе мерцание изделия станет чувствительным, вредным для зрительных органов, приводящим к быстрой утомляемости и мигреням.

Популярные статьи  Греющий кабель как теплый пол: преимущества и недостатки

Схема светодиодной лампы: устройство простейших драйверов

Светлый угол — светодиоды • Драйвер на BP2833D

Обсуждаем построение светодиодных драйверов, особенности питания разных типов светодиодов.

Re: Драйвер на BP2833D

Alexandr A » 22 авг 2020, 14:50

Доброго дня , подскажите пожалуйста какие номиналы резисторов и конденсаторов в драйверах на этой микросхеме, ну и если можно индуктивность и габариты дросселька. Смотрел даташит, там расчет есть а я в английском ноль.

Alexandr A Светлячок Сообщений: 1Зарегистрирован: 22 авг 2020, 12:55 Благодарил (а): 0 раз. Поблагодарили: 0 раз.

Re: Драйвер на BP2833D

Shvex » 30 окт 2020, 19:52

Здравствуйте!Ловите:Диодный мостик: IN4007 4шт.С, после моста: 10мкф 400ВR, с 4 ноги bp2833d на плюс: 1МомС, с 4 ноги bp2833d на общий: 7мкф 50ВR, с 2 ноги bp2833d на общий: 120КR, с 7,8 ног bp2833d на общий 1,2 омаС, паралельно светодиодам: 10мкф 160ВD, SF28 (2A, 600В быстродействующий)L, : по формуле из даташита в зависимости от частоты преобразования, нет под рукой индуктометра Shvex Торшер Сообщений: 38Зарегистрирован: 23 янв 2013, 18:53Откуда: Котлас Благодарил (а): 2 раз. Поблагодарили: 4 раз.

Re: Драйвер на BP2833D

Nickknsk » 31 окт 2020, 23:26

MAP3092SIRH из этой же темы. Достать проще. И связаться с производителем, что бы помог с разработкой- проще

Это важно для тех. кто сам планирует выпускать

Input power 30W , Power Factor 0.95https://www.magnachip.com/product/Descri … AP3092SIRHКомпания делает микросхемы для Acrich. Nickknsk Фонарик Сообщений: 22Зарегистрирован: 20 июл 2020, 11:27 Благодарил (а): 0 раз. Поблагодарили: 0 раз.

Re: Драйвер на BP2833D

iurii » 02 ноя 2020, 01:46

Alexandr A писал(а):Доброго дня , подскажите пожалуйста какие номиналы резисторов и конденсаторов в драйверах на этой микросхеме, ну и если можно индуктивность и габариты дросселька. Смотрел даташит, там расчет есть а я в английском ноль.

Купить драйверок за 2доляра на АЛИ и не мучаться . Сам нагрузил такой драйверок на ВР2836 42двумя ваттами по выходу и прекрасно пашет https://www.aliexpress.com/item/18-36-1W … eb201560_9 За это сообщение автора iurii поблагодарил: fivin07 (02 ноя 2020, 10:54) iurii Искра знания Сообщений: 735Зарегистрирован: 01 мар 2020, 22:11 Благодарил (а): 0 раз. Поблагодарили: 33 раз.

Re: Драйвер на BP2833D

Shvex » 09 ноя 2020, 18:03

«iurii» Купить драйверок за 2доляра на АЛИ и не мучаться …»Для тех кто не хочет покупать: Индуктивность дросселя: 2 миллигенри. Shvex Торшер Сообщений: 38Зарегистрирован: 23 янв 2013, 18:53Откуда: Котлас Благодарил (а): 2 раз. Поблагодарили: 4 раз.

Вернуться в Питание и подключение светодиодов

Жизнь вторая

Прежде чем начать операцию по спасению, нужно обзавестись парочкой полезных приспособлений — это кусок шнура с сетевой вилкой на 220 В и такой-же провод, но с патроном и кнопкой.

Схема светодиодной лампы: устройство простейших драйверов

С ними очень удобно проводить измерение, проверку и перепайку лампочки прямо на столе, не бегая после каждого изменения к розетке (светильнику).

Схема светодиодной лампы: устройство простейших драйверов

Для отделения пластиковой колбы от корпуса, можно на поставить в место стыка нож и несколько раз ударить по нему молотком, делаем это аккуратно, перемещая по кругу. Подробнее о ремонте было здесь.

Схема светодиодной лампы: устройство простейших драйверов

Схема светодиодной лампы: устройство простейших драйверов

Сняв колбу видно десяток SMD светодиодов, каждый из которых легко проверяется обычным блоком питания. Экспериментально установлено рабочее напряжение примерно 10 — 12 вольт. Как и ожидалось, один светодиод не выдержал суровой жизни и сгорел.

Схема светодиодной лампы: устройство простейших драйверов

Можно конечно его выпаять и заменить на аналогичный, но это надо иметь подходящее оборудование (паяльную станцию), нужные диоды на замену, и желание всем этим заниматься. Проще содрать с него гелевый слой с кристаллом и замкнуть, банально залив припоем верхнюю часть.

Схема светодиодной лампы: устройство простейших драйверов

До блока питания даже не пришлось добираться — всё заработало и лампа вновь заняла свое почетное место.

Как отремонтировать своими руками

Схема светодиодной лампы: устройство простейших драйверов

Чтобы сделать ремонт светодиодной лампочки своими руками, для начала её нужно разобрать. Есть два простых способа. Данные способы также подойдут для энергосберегающих ламп.

Откручивание лампы

Для того чтобы снять рассеивающий купол, необходимо взять лампочку за края и аккуратно, вращательными движениями отсоединить верх от корпуса. Этот процесс и не отнимает много времени, так как покрытие герметика довольно тонкое и моментально реагирует на различные изменения.
Для того чтобы открутить купол от корпуса, крайне не рекомендуется прикладывать лишние усилия.
После того как купол от корпуса отделён, время самого сложного этапа – отделение пластины от корпуса, на которой находятся сверхъяркие диоды.
Из-за своих очень маленьких размеров на данном этапе необходимо воспользоваться особыми отвёртками прецизионного типа.
После этого нужно отделить радиатор и монтажную пластину

Для этого следует взять любой прочный предмет с острым и плоским краем и осторожно поддеть край платы, чтобы потом можно было её оттуда снять.
Теперь время для того, чтобы распаять зоны прилегания провода питания. После того как это сделано, можно, наконец, отделать пластину со сверхъяркими диодами от других деталей.
Цоколь светильника и радиатор отсоединяются такими же аккуратными вращательными движениями, как при снятии рассеивающего купола

После выполнения этого этапа можно разложить все составляющие светильника на рабочей поверхности.

Нагревание при помощи строительного фена

  • Этот способ подойдёт для моделей с толстым типом стекла, для которых не подходит взаимодействие с инструментами вроде отвёртки.
  • Фен необходим для разогрева корпуса светильника.
  • Таким образом, можно будет извлечь стеклянный фрагмент, который приклеен к цилиндрической основе. Во время нагревания клей станет эластичным, а детали будут расширяться. После завершения без затруднений устройство распадётся на детали.

Срок службы драйверов

Срок эксплуатации лед драйвера для светодиодных светильников зависит от внешних условий и изначального качества устройства. Ориентировочный срок исправной службы драйвера от 20 до 100 тыс. часов.

Повлиять на срок службы могут такие факторы:

  • перепады температурного режима;
  • высокая влажность;
  • скачки напряжения;
  • неполная загруженность устройства (если драйвер рассчитан на 100 Вт, а использует 50 Вт, напряжение возвращается обратно, от чего возникает перегрузка).

Известные производители дают гарантию на драйверы, в среднем на 30 тыс. часов. Но если устройство использовалось неправильно, то ответственность несет покупатель. Если LED-источник не включается или перестал работать, возможно, проблема в преобразователе, неправильном соединении, или неисправности самого осветительного прибора.

Как проверить драйвер для светодиодов на работоспособность смотрите в видео ниже:

Схема светодиодной лампы: устройство простейших драйверовWatch this video on YouTube

Основные характеристики драйверов

Ключевые параметры приборов для преобразования тока, на которые нужно опираться при выборе:

  1. Номинальная мощность устройства. Она указана в диапазоне. Максимальное значение обязательно должно быть немного больше, чем потребляемая мощность, подключаемого осветительного прибора.
  2. Напряжение на выходе. Значение должно быть больше или равно общей сумме падения напряжения на каждом элементе схемы.
  3. Номинальный ток. Должен соответствовать мощности прибора, чтобы обеспечивать достаточную яркость.

В зависимости от этих характеристик, определяют какие LED-источники можно подключить при помощи конкретного драйвера.

Схема светодиодной лампы: устройство простейших драйверовВся важная информация есть на корпусе устройства

Как подобрать драйвер для светодиодов

На рынке представлен широкий ассортимент драйверов для светодиодов от разных производителей. Многие из них, особенно китайского производства, отличаются низкой ценой. Однако покупать такие устройства не всегда выгодно, так как большинство из них не соответствует заявленным характеристикам. Кроме того такие драйверы не сопровождаются гарантией, а в случае обнаружения брака их нельзя вернуть или заменить на качественные.

Так существует вероятность приобретения драйвера, заявленная мощность которого составляет 50 W. Однако на деле оказывается, что эта характеристика имеет непостоянный характер и такая мощность является лишь кратковременной. В реальности же такое устройство будет работать как LED-driver 30W или максимум 40W. Так же может оказаться, что в начинке не будет хватать некоторых компонентов, отвечающих за устойчивое функционирование драйвера. Кроме того могут применяться компоненты низкого качества и с небольшим сроком службы, что является по сути браком.

Ресурс работы качественного драйвера — более 70 тыс. часов

При покупке стоит обращать внимание на указание бренда изделия. На качественном товаре обязательно будет указан изготовитель, который предоставит гарантию и будет готов отвечать за свою продукцию

Следует отметить, что и срок службы драйверов от проверенных производителей будет гораздо больше. Ниже приведено ориентировочное время работы драйверов в зависимости от изготовителя:

  • драйвер от сомнительных производителей – не более 20 тыс. часов;
  • устройства среднего качества – около 50 тыс. часов;
  • преобразователь от проверенной фирмы-изготовителя с использованием качественных компонентов – свыше 70 тыс. часов.
Популярные статьи  Трубы вентиляции для кровли: советы по выбору трубопровода + инструктаж по монтажу

Для рассчета требуемого напряжения на выходе, необходимо учитывать мощность и силу тока

Срок годности

Срок эксплуатации драйвера несколько меньше по сравнению с оптической составляющей светодиодного светильника — порядка 30 000 часов. Это связано с рядом причин: скачками напряжения, изменениями температуры, влажности и нагрузкой на преобразователь.

Одно из уязвимых мест — сглаживающий конденсатор, в котором со временем испаряется электролит. В большинстве случаев это происходит при монтаже в помещениях с высокой влажностью или подключении к сети, в которой есть скачки напряжения. Подход приведет к повышению пульсаций на выходе устройства, что негативно воздействует на led-диоды.

Образец импульсного драйвера – модель CPC9909

В отличие от линейного драйвера с конденсатором, импульсный эффективно защищает светодиоды от перепадов напряжения и помех в сети.

Примером импульсного устройства служит популярная электронная модель CPC9909. Эффективность ее использования достигает 98% — показателя, при котором действительно можно говорить об энергосбережении и экономии.

Микросхему CPC9909, разработанную компанией Clare, часто применяют для самостоятельной сборки светодиодных светильников, в том числе и увеличенной мощности. Контроллер заключен в компактный корпус из пластика

Питание устройства может происходить напрямую от высокого напряжения – до 550 В, так как драйвер оснащен встроенным стабилизатором. Благодаря этому же стабилизатору схема стала проще, а стоимость – ниже.

Схема LED-драйвера на базе микросхемы CPC9909. Преимущества схемы: возможность работы в температурном диапазоне от -55 °С до +85 °С и питание от тока переменного напряжения

Микросхему успешно используют для разработки электросетей аварийного и резервного освещения, так как она подходит для схем повышающих преобразователей.

В домашних условиях на базе CPC9909 чаще всего собирают светильники с питанием от батарей или драйверы с мощностью, не превышающей 25 В.

Разделение LED-драйверов по типу устройства

Разделить преобразователи можно на два типа – линейные и импульсные. Оба типа применимы к световым диодам, но различия между ними заметны и по стоимости, и по техническим характеристикам.

Линейный преобразователь тока и его схема

Линейные преобразователи отличаются простотой конструкции и низкой стоимостью. Но такие драйверы имеют существенный недостаток – возможность подключения только маломощных световых элементов. Часть энергии тратится на выделение тепла, что способствует снижению коэффициента полезного действия (КПД).

Импульсные преобразователи основаны на принципе широтно-импульсной модуляции (ШИМ) и при их работе величины выходных токов обусловлены таким параметром, как коэффициент заполнения. Это означает, что изменения частоты импульсов нет, а вот коэффициент заполнения способен изменяться на величины от 10 до 80%. Такие драйверы позволяют продлить срок службы световых диодов, но имеют один недостаток. При их работе возможно наведение электромагнитных помех. Попробуем разобраться, чем это грозит человеку на простом примере.

Импульсные стабилизаторы немного крупнее

У проживающего в квартире или доме установлен кардиостимулятор. При этом в небольшой комнате установлена люстра с множеством приборов, работающих на импульсных лед драйверах для светодиодных ламп. Кардиостимулятор при этом может начать давать сбои. Конечно, это утрировано и для создания столь сильных помех нужно очень много ламп, которые находятся на расстоянии менее метра от кардиостимулятора, но все же риск присутствует.

А это преобразователь для более мощного светодиода

Вариант драйвера без стабилизатора тока

В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.

Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.

На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.

Диаграмма напряжения в схеме без стабилизатора

Диаграмма в схеме со стабилизатором

Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.

Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.

Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт. Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.

Как сделать драйвер для светодиодов своими руками

Собрать схему драйвера светодиодной лампы сможет любой начинающий мастер. Но для этого потребуется аккуратность и терпение. С первого раза стабилизирующее устройство может не получиться. Чтобы читателю было понятнее, как выполняется работа, предлагаем несколько простейших схем.

Как можно убедиться, ничего сложного в схемах драйверов для светодиодов от сети 220 В нет. Попробуем рассмотреть пошагово все этапы работ.

Пошаговая инструкция изготовления драйвера для светодиодов своими руками

Фото пример Выполняемое действие
Для работы нам понадобится обычный блок питания для телефона. С его помощью все выполняется быстро и просто.
После разборки зарядного устройства в руках у нас уже практически полноценный драйвер для трех одноваттных светодиодов, однако его нужно немного доработать.
Выпаиваем ограничительный резистор на 5 кОм, который находится возле выходного канала. Именно он не дает зарядному устройству подать слишком большое напряжение на сотовый телефон.
Вместо ограничительного впаиваем подстроечный резистор, выставив на нем те же 5кОм. Впоследствии добавим напряжение до необходимого.
На выходной канал припаивается 3 светодиода по 1 Вт каждый, соединенные последовательно, что в сумме даст нам 3 Вт.
Находим входные контакты и отпаиваем от печатной платы. Они нам уже не нужны…
…а на их место припаиваем сетевой шнур, по которому будет подаваться питание 220 В.
При желании в разрыв можно поставить резистор на 1 Ом, выставить амперметром все показатели. В этом случае диапазон затухания светодиодов будет шире.
После полной сборки проверяем работоспособность. Выходное напряжение 5 В, светодиоды пока не светятся.
Поворачивая регулятор на резисторе видим, как LED-элементы начинают «разгораться».

Будьте внимательны. От такого преобразователя можно получить разряд не только в 220 В (от сетевого шнура), но и удар порядка 450 В, что довольно неприятно (проверено на себе).

Очень важно! Перед тем, как проверить драйвер для светодиодов на работоспособность и подключить к источнику питания, стоит еще раз визуально проверить правильность собранной схемы. Поражение электрическим током опасно для жизни, а вспышка от короткого замыкания может причинить вред глазам.

Краткий обзор и тестирование популярных LED-ламп

Хотя принципы построения схем драйверов различных осветительных устройств похожи, между ними имеются отличия и в последовательности подключения элементов, и в их выборе.

Рассмотрим схемы 4 ламп, которые продаются в свободном доступе. При желании их можно отремонтировать своими руками.

Галерея изображений

Фото из

Драйвер разобранной лампы BBK P653F

Компактная лампа Ecola 7w

Разборный аналог Ecola GU5.3

Jazzway 7.5w GU10 – подходит для ремонта

Если существует опыт работы с контроллерами, можно заменить элементы схемы, перепаять ее, слегка усовершенствовать.

Однако скрупулезная работа и усилия по поиску элементов не всегда оправданы – легче купить новый осветительный прибор.

Вариант #1 – LED-лампа BBK P653F

У марки BBK существует две очень похожие модификации: лампа P653F отличается от модели P654F лишь конструкцией излучающего узла. Соответственно, и схема драйвера, и конструкция прибора в целом у второй модели построена по принципам устройства первой.

Схема светодиодной лампы: устройство простейших драйверов
Плата имеет компактные размеры и продуманное расположение элементов, для крепления которых применены обе плоскости. Наличие пульсаций объясняется отсутствием фильтрующего конденсатора, который должен быть на выходе

В конструкции легко обнаружить недостатки. Например, место установки контроллера: частично в радиаторе, при отсутствии изоляции, частично в цоколе. Сборка на микросхеме SM7525 выдает на выходе 49,3 В.

Вариант #2 – LED-лампа Ecola 7w

Радиатор выполнен из алюминия, цоколь – из термостойкого полимера серого цвета. На печатной плате толщиной в полмиллиметра закреплены 14 диодов, подключенных последовательно.

Популярные статьи  Потребление электроэнергии бытовыми приборами: таблица и советы по экономии

Между радиатором и платой – слой теплопроводящей пасты. Цоколь зафиксирован саморезами.

Схема светодиодной лампы: устройство простейших драйверов
Схема контроллера простая, реализована на компактной плате. Светодиоды нагревают плату-основание до +55 ºС. Пульсаций практически нет, радиопомехи также исключены

Плата полностью помещена внутрь цоколя и присоединена укороченными проводами. Возникновение коротких замыканий невозможно, так как вокруг находится пластмасса – изоляционный материал. Результат на выходе контроллера – 81 В.

Вариант #3 – разборная лампа Ecola 6w GU5,3

Благодаря разборной конструкции можно самостоятельно производить ремонт или совершенствовать драйвер устройства.

Однако портит впечатление неприглядный внешний вид и конструкция прибора. Габаритный радиатор утяжеляет вес, поэтому при креплении лампы к патрону рекомендуется дополнительная фиксация.

Схема светодиодной лампы: устройство простейших драйверов
Плата имеет компактные размеры и продуманное расположение элементов, для крепления которых применены обе плоскости. Наличие пульсаций объясняется отсутствием фильтрующего конденсатора, который должен быть на выходе

Недостатком схемы является наличие заметных пульсаций светового потока и высокая степень радиопомех, что обязательно скажется на сроке эксплуатации. Основа контроллера – микросхема BP3122, показатель на выходе – 9,6 В.

Больше информации о светодиодных лампочках марки Ecola мы рассмотрели в другой нашей статье.

Вариант #4 – лампа Jazzway 7,5w GU10

Внешние элементы лампы отсоединяются легко, поэтому до контроллера можно добраться достаточно быстро, открутив две пары саморезов. Защитное стекло держится на защелках. На плате зафиксированы 17 диодов с последовательной связью.

Однако сам контроллер, находящийся в цоколе, щедро залит компаундом, а провода запрессованы в клеммах. Чтобы их освободить, нужно воспользоваться сверлом или применить распайку.

Схема светодиодной лампы: устройство простейших драйверов
Недостаток схемы в том, что функцию ограничителя тока выполняет обычный конденсатор. При включении лампы возникают броски тока, результатом чего является или перегорание светодиодов, или выход из строя светодиодного моста

Радиопомех не наблюдается – и все благодаря отсутствию импульсного контроллера, но на частоте 100 Гц наблюдаются ощутимые пульсации света, доходящие до 80% от максимального показателя.

Результат работы контроллера – 100 В на выходе, но по общей оценке лампа относится скорее к слабым приборам. Стоимость ее явно завышена и приравнена к стоимости марок, которые отличаются стабильным качеством продукции.

Другие особенности и характеристики ламп этого производителя мы привели в следующей статье.

Доработка лампы для увеличения срока службы

Первая доработка заключается в снижении тока через светодиоды, что позволяет значительно продлить срок службы лампы, яркость свечения при этом неизбежно снижается. Снижение яркости при снижении тока через светодиоды происходит не линейно, с некоторым отставанием, так что снижением тока достигается дополнительное повышение КПД светодиода, что в свою очередь еще больше снижает температуру кристаллов, такой доработкой убиваем двух зайцев.

Для наглядности КПД светодиода и потерь в виде тепла, дан график зависимости тока через светодиод и яркости свечения, где показана нелинейная зависимость.

Зависимость яркости светодиода от прямого тока с учетом тепловых потерь

Обычно это легко сделать без схем и даташитов на микросхему драйвера. Нужно найти на плате резистор или пару резисторов включенную в параллель с сопротивлением в несколько Ом – это датчик тока который нас интересует. Такой резистор – датчик тока, есть абсолютно во всех схемах драйверов, как в импульсных, так и в линейных, и везде сопротивление датчика единицы Ом.

Первая переделка схемы драйвера LED лампы

Резистор нужно заменить на резистор бОльшего сопротивления или отпаять один из двух резисторов. Ток через светодиоды снижается пропорционально увеличению сопротивления резистора датчика тока.

Доработка схемы – показан резистор обратной связи

Даже незначительное снижение тока через светодиоды и мощности лампы существенно продлевает срок службы, так как температура самого кристалла светодиода снижается гораздо в большей степени, чем температура наружного корпуса лампы из за теплового сопротивления переходов кристалл-подложка-припой-проводник платы и т.д., и уменьшается тепловое расширение разрушающее место крепления проводника к кристаллу.

Возьмем случай для наглядности как тепло передается от кристалла в окружающую среду: допустим линия электропередач где нибудь либо очень длинная, либо сечение проводов маленькое, при включении приборов разной мощности происходит заметная “просадка” напряжения , чем выше мощность потребителя, тем больше просадка напряжения (потери).

Так и с теплом у светодиодов, при одном и том же тепловом сопротивлении, при меньшей мощности на кристалле, тепло лучше передаётся на корпус и в окружающий воздух (меньше “просадка”).

Более дорогие лампы отличаются большим количеством светодиодов на меньшем токе и заниженной мощности, чем у более дешёвых ламп, светоотдача люмен/вт у них больше и режим светодиодов более щадящий. На фото ниже лампочка с заявленной светоотдачей около 108 Лм/вт, тогда как обычно это не более 100 лм/вт.

Светодиодная лампочка с большей светоотдачей

Я обычно занижаю мощность на 20-30%, но делаю это на новой лампе, пока золотые проводники еще крепкие.

Та же лампа, со вскрытой колбой

Делал занижение мощности когда проводил ремонт светодиодной лампы, но тут для надёжного результата нужно снижать ток через светодиоды как минимум на 50%, так как все светодиоды из одной партии и работали в одинаковых условиях, раз один сгорел, то остальные будут один за одним все потихоньку выходить из строя, лампа долго после ремонта не проработает без занижения мощности, если конечно не заменить сразу все диоды на новые, но это не всегда приемлемо.

Расчет драйверов для светодиодов

Чтобы определить напряжение на выходе светодиодного драйвера, необходимо рассчитать отношение мощности (Вт) к значению тока (А). К примеру, драйвер имеет следующие характеристики: мощность 3 Вт и ток 0,3 А. Расчетное отношение составляет 10В. Таким образом, это будет максимальная величина выходного напряжения данного преобразователя.

Если необходимо подключить 3 LED-источника, ток каждого из которых составляет 0,3 мА при напряжении питания 3В. Подключая к светодиодному драйверу один из приборов, то выходное напряжение будет равно 3В и ток 0,3 А. Собрав последовательно два LED-источника, выходное напряжение будет равно 6В и ток 0,3 А. Добавив в последовательную цепочку третий светодиод, получим 9В и 0,3 А. При параллельном соединении 0,3 А одинаково распределятся между светодиодами по 0,1 А. Подключая светодиоды к устройству на 0,3 А при значении тока 0,7, им достанется всего 0,3 А.

В некоторых драйверах предусмотрена защита от аварийных ситуаций

Таков алгоритм функционирования светодиодных драйверов. Они выдают такое количество тока, на которое они рассчитаны. Способ подключения LED-приборов в этом случае не играет роли. Есть модели драйверов, предполагающие любое количество подключаемых к ним светодиодов. Но тогда существует ограничение по мощности LED-источников: она не должна превышать мощность самого драйвера. Выпускаются драйверы, рассчитанные на определенное число подключаемых светодиодов К ним разрешается подключить меньшее количество светодиодов. Но такие драйверы имеют низкую эффективность, в отличие от устройств, рассчитанных на конкретное количество LED-приборов.

Следует отметить, что у драйверов, рассчитанных на фиксированное количество излучающих диодов, предусмотрена защита от аварийных ситуаций. Такие преобразователи некорректно работают, если к ним подключить меньшее число светодиодов: они будут мерцать или вообще не будут светиться. Таким образом, если подключить к драйверу напряжение без соответствующей нагрузки, он будет работать нестабильно.

Характеристики драйверов, достойные внимания

Характеристики преобразователей, необходимых в том или ином случае, определяются, исходя из параметров LED-потребителей. Основными можно назвать:

  1. Номинальную мощность драйвера – этот параметр должен превышать общую мощность, потребляемую световыми диодами, которые будут в его схеме.
  2. Выходное напряжение – зависит от величин падения напряжения на каждом из световых диодов.
  3. Номинальный ток, который зависит от яркости свечения и потребляемой мощности элемента.

Различные цвета LED-элементов имеют разное падение напряжения
Важно знать! Падение напряжения на светодиоде зависит от его цвета. К примеру, если к БП 12 В получится подключить 16 светодиодов красного цвета, то максимальное количество зеленых составит уже 9.

Оцените статью
( Пока оценок нет )
Добавить комментарий