Максимальная длина контура теплого пола 16 трубой: определяем самостоятельно с помощью калькуляторов

Способы установки системы теплый пол

Для правильного функционирования этой отопительной системы важна четкая последовательность слоев так называемого “пирога” теплого пола.

Тепловой контур укладывается на предварительно тепло- и гидроизолированную поверхность, а сверху заливается или засыпается цементной стяжкой, поверх которой укладывается финишное напольное покрытие. Вышеперечисленные слои – оболочка пирога – обязательны в обоих случаях. Они защищают систему от внешних воздействий и повышают ее КПД.

Теплые полы отличное решение для благоустройства своего жилья. Температура пола напрямую зависит от длины труб теплого пола, спрятанных в стяжке. Труба в полу укладывается петлями. Фактически из количества петель и их длинны и складывается общая длина трубы. Понятно, чем длиннее труба в одинаковом объеме, тем теплее пол. В этой статье поговорим об ограничениях на длину одного контура теплого пола.

Приблизительные расчетные характеристики для труб диаметром 16 и 20 мм составляют: 80-100 и 100-120 метров соответственно. Эти данные приведены приблизительно для примерных расчетов. Давайте более детально рассмотрим процесс монтажа и заливки теплых полов.

Последствия превышения длины

Разберемся к каким последствиям может привести увеличение длины трубы теплого пола. Одна из причин — это увеличение гидравлического сопротивления, которая создаст дополнительную нагрузку на гидравлический насос в результате которой он может выйти из строя или же просто может не справится с возложенной на него задачей. Расчет сопротивления состоит из многих параметров. Условий, параметров укладки. Материала применяемых труб. Вот три основных: длина петли, количество изгибов и тепловая нагрузка на нее

Стоит заметить, что тепловая нагрузка с увеличением петли растет. Также увеличивается и скорость потока и гидравлическое сопротивление. По скорости потока есть ограничения. Он не должен превышать 0.5 м/с. Если мы превысим это значение могут возникнуть различные шумовые эффекты в системе трубопровода. Так же увеличивается основной параметр, ради которого и делается этот расчет. Гидравлическое сопротивление нашей системы. На него тоже есть ограничения. Они составляют 30-40 кП на одну петлю.

Следующая причина состоит в том, что при увеличении длинны трубы теплого пола возрастает давление на стенки трубы, вызывающие удлинение этого участка при нагревании. Трубе находящейся в стяжке некуда деваться. И она начнет сужаться в самом слабом месте. Сужение может вызвать перекрытие потока в теплоносителе. У труб, изготовленных из различного материала, разный коэффициент расширения. Например, у полимерных труб коэффициент расширения очень высок. Все эти параметры необходимо учитывать при монтаже теплого пола.

Поэтому заливать стяжку теплого пола необходимо с опрессованными трубами. Опрессовать лучше воздухом с давлением примерно в 4 бара. Таким образом, когда Вы заполните систему водой и начнете ее нагревать, трубе в стяжке будет где расширяться.

Оптимальная длина трубы

Учитывая все выше перечисленные причины с учетом поправок на линейное расширение материала труб возьмем за основу максимальную длину труб теплого пола на один контур:

Какая длина трубы теплого пола будет оптимальной?

Давайте выясним оптимальную длину трубы теплого пола и какие могут быть последствия, если контур получится большей длины. Все в нашей статье

Варианты укладки

Строителями используются четыре распространенных схемы укладки труб, каждая из которых лучше подходит для использования в помещении различной формы. От их «рисунка» в немалой степени зависит максимальная длина контура теплого пола. Это:

  • «Змейка». Последовательная укладка, где горячая и холодна линия, идут друг за другом. Подходит для помещений вытянутой формы с разделением на зоны различной температуры.
  • «Двойная змейка». Применяется в прямоугольных комнатах, но без зонирования. Обеспечивает равномерное прогревание площади.
  • «Угловая змейка». Последовательная система для помещения с равной длиной стен и наличием зоны низкого прогревания.
  • «Улитка». Сдвоенная система прокладывания, подходящая для приближенных к квадрату форм комнат без холодных участков.

Выбранный вариант укладки оказывает влияние на максимальную длину водяного пола, потому что меняется количество петель труб и радиус изгиба, который также «съедает» определенный процент материала.

Вычисления сечения по СНИП 2.04.01-85

Прежде всего, необходимо понимать, что расчет диаметра водопропускной трубы является сложным инженерным процессом. Для этого потребуются специальные знания. Но, выполняя бытовую постройку водопропускной магистрали, часто гидравлический расчет по сечению проводят самостоятельно.

Данный вид конструкторского вычисления скорости потока для водопропускной конструкции можно провести двумя способами. Первый – табличные данные. Но, обращаясь к таблицам необходимо знать не только точное количество кранов, но и емкостей для набора воды (ванны, раковины) и прочего.

Только при наличии этих сведений о водопропускной системе, можно воспользоваться таблицами, которые предоставляет СНИП 2.04.01-85. По ним и определяют объем воды по обхвату трубы. Вот одна из таких таблиц:

Внешний объем трубного сортамента (мм)Примерное количество воды, которое получают в литрах за минутуПримерное количество воды, исчисляемое в м3 за час 20 15 0,9 25 30 1,8 32 50 3 40 80 4,8 50 120 7,2 63 190 11,4

Однозначно, эти данные по объему, показывающие потребление, интересны, как информация, но специалисту по трубопроводу понадобятся определение совершенно других данных – это объем (в мм) и внутреннее давление в магистрали. В таблице это можно найти не всегда. И более точно узнать эти сведениям помогают формулы.

Уже понятно, что размеры сечения системы влияют на гидравлический расчет потребления. Для домашних расчетов применяется формула расхода воды, которая помогает получить результат, имея данные давления и диаметра трубного изделия. Вот эта формула:

Формула для вычисления по давлению и диаметру трубы: q = π×d²/4 ×V

Если сеть водоснабжения питается от водонапорной башни, без дополнительного влияния нагнетающего насоса, то скорость передвижения потока составляет приблизительно 0,7 – 1,9 м/с. Если подключают любое нагнетающее устройство, то в паспорте к нему имеется информация о коэффициенте создаваемого напора и скорости перемещения потока воды.

Данная формула не единственная. Есть еще и многие другие. Их без труда можно найти в сети интернета.

В дополнение к представленной формуле нужно заметить, что огромное значение на функциональность системы оказывают внутренние стенки трубных изделий. Так, например, пластиковые изделия отличаются гладкой поверхностью, нежели аналоги из стали.

По этим причинам, коэффициент сопротивления у пластика существенно меньше. Плюс ко всему, эти материалы не подвергаются влиянию коррозийных образований, что также оказывает положительное действие на пропускные возможности сети водоснабжения.

Теплый пол расчет мощности

На определение необходимой мощности теплого пола в помещении влияет показатель теплопотерь, для точного определения которых потребуется произвести сложный теплотехнический подсчет по особой методике.

  • При этом учитываются следующие факторы:
  • площадь обогреваемой поверхности, общая площадь помещения;
  • площадь, тип остекления;
  • наличие, площадь, тип, толщина, материал и термическое сопротивление стен и иных ограждающих конструкций;
  • уровень проникновения солнечных лучей в помещение;
  • наличие иных источников тепла, в том числе учитывается тепло, источаемое оборудованием, различными приборами и людьми.

Методика выполнения подобных точных расчетов требует глубоких теоретических знаний и опыта, а потому теплотехнический расчет лучше доверить специалистам.

Ведь только они знают, как рассчитать мощность теплого пола водяного с наименьшей погрешностью и оптимальными параметрами

Особенно это важно при проектировании обогреваемого встроенного отопления в помещениях большой площадью с большой высотой

Укладка и эффективная эксплуатация водяного обогреваемого пола возможна лишь в помещениях с уровнем теплопотерь менее 100 Вт/м². Если теплопотери выше, необходимо принять меры по утеплению помещения с целью снижения потерь тепла.

Однако если проектный инженерный расчет стоит немалых денег, в случае с небольшими помещениями приблизительные расчеты можно провести самостоятельно, приняв 100 Вт/м² за усредненную величину и отправную точку в дальнейших расчетах.

  1. При этом для частного дома принято корректировать усредненный показатель потерь тепла исходя из общей площади строения:
  2. 120 Вт/м² – при площади дома до 150 м²;
  3. 100 Вт/м² – при площади 150-300 м²;
  4. 90 Вт/м² – при площади 300-500 м².

Нагрузка на систему

  • На то, какая будет мощность водяного теплого пола на квадратный метр, влияют такие параметры, создающие нагрузку на систему, определяющие гидравлическое сопротивление и уровень теплоотдачи, как:
  • материал, из которого изготовлены трубы;
  • схема укладки контуров;
  • длина каждого контура;
  • диаметр;
  • расстояние между нитками труб.

Характеристика:

Трубы могут быть медными (отличаются наилучшими теплотехническими и эксплуатационными характеристиками, однако обходятся не дешево и требуют специальных навыков, а также инструмента).

Основных схем укладки контура два: змейкой и улиткой. Первый вариант наиболее прост, но менее эффективен, так как дает неравномерный нагрев пола. Второй более сложен в реализации, но эффективность прогрева на порядок выше.

Площадь, отапливаемая одним контуром, не должна превышать 20 м². Если отапливаемая площадь больше, то целесообразно трубопровод разбить на 2 или более контуров, подключив их к распредколлектору с возможностью регулирования нагрева участков пола.

Общая длина труб одного контура должна быть не больше 90 м. При этом, чем больший выбран диаметр, тем больше расстояние между нитками труб. Как правило, не применяются трубы с диаметром более 16 мм.

Каждый параметр имеет свои коэффициенты для дальнейших расчетов, посмотреть которые можно в справочниках.

Расчет мощности теплоотдачи: калькулятор

Чтобы определить мощность водяного пола, необходимо найти произведение общей площади помещения (м²), разницы температур подачи и обратно поступающей жидкости, и коэффициентами, зависящими от материала труб, напольного покрытия (дерево, линолеум, плитка и т.д.), других элементов системы.

Мощность водяного теплого пола на 1 м², или теплоотдача, не должна превышать уровень теплопотерь, однако не более чем на 25%. В случае слишком малого или слишком большого значения, необходимо произвести перерасчет, выбрав иной диаметр труб и расстояние между нитями контура.

Показатель мощности тем выше, чем больше диаметр выбранных труб, и тем ниже, чем больший шаг задан между нитками. Для экономии времени можно воспользоваться электронными калькуляторами расчета водяного пола или скачать специальную программу.

Инструкция

Зная общие теплопотери ограждающими конструкциями помещения, вначале следует отнять от этого значения величину потерь через полы, поскольку при устройстве теплого пола их не будет. Полученную величину Q (Вт) надо разделить на площадь комнаты F (м2) для того, чтобы узнать удельную теплоотдачу, которую должна обеспечивать система водяного пола q (Вт/м2):

q=Q/F.

Рисунок 2. Номограмма определения удельной теплоотдачи теплого пола с ковровым покрытием или паркетом.

Дальше расчет выполняется графическим способом по номограммам, представленным на рис. 1, 2, 3. Следует выбрать ту номограмму, которая соответствует вашему напольному покрытию. Взяв получившееся значение q, откладываемое с левой стороны графика, нужно определить температуру поверхности пола, которая обеспечит необходимое поступление тепла в помещение. Например, если удельная теплоотдача должна составлять 99 Вт/м2, а покрытие синтетическое (линолеум), то по номограмме на рис. 1 необходимая температура поверхности – +29⁰С, что неприемлемо.

Тогда по той же номограмме принимается максимально допустимая температура – +26⁰С. Если от этого значения (располагается на правой шкале графика) вести горизонтальную линию, то она пересечет несколько диагональных графиков, отражающих интервал укладки труб теплого пола. Подбирается оптимальное значение, в данном примере подойдет 0,2 м. От места пересечения горизонтальной линии температуры и диагонального графика интервала укладки проводится вертикальная линия вниз. Она укажет на величину средней разности температур, в приведенном примере она составит 21⁰С. Дойдя по горизонтальной линии до самого конца, можно выяснить реальную удельную теплоотдачу контура отопления, здесь получится 68 Вт/м2.

Теперь можно рассчитать параметры теплоносителя для системы. Определяется его средняя расчетная температура:

tт=∆tср+tпом.

В этой формуле:

Рисунок 3. Номограмма определения удельной теплоотдачи теплого пола с толстым ковровым покрытием или толстым паркетом.

  • tт – средняя расчетная температура воды в системе, ⁰С;
  • ∆tср – средняя разница температур, определенная ранее по номограмме, ⁰С;
  • tпом – необходимая температура воздуха в помещении, ⁰С.

Если подставить те же цифры из рассматриваемого примера и принять значение температуры в комнате равным 20⁰С, результат будет – +41⁰С. Ранее были указаны стандартные температурные графики, которые следует принимать для теплого пола, под результат примера методом подбора определен график 45/35⁰С.

Поскольку температура поверхности была принята меньше требуемой для отопления комнаты, нужно вычислить, какова разница между потоком, который будет поступать от теплого пола, и необходимым изначально количеством теплоты для компенсации потерь через наружные ограждения. Для этого нужно площадь помещения умножить на удельную теплоотдачу от контура напольного отопления:

Qп=F×qп.

Если для примера принять значение площади равным 40 м2, то величина теплового потока будет:

68 Вт/м2х40 м2=2720 Вт.

Изначальная же расчетная величина q составляла 99 Вт/м2, а общая – 3960 Вт, разница – 1240 Вт. Это недостающее количество теплоты надо подать в комнату другим, традиционным способом отопления, то есть радиаторами.

Определив расчетный температурный график подачи теплоносителя (в примере – 45/35⁰С), интервал укладки трубопроводов отопительного контура (в примере принят 0,2 м), надо рассчитать протяженность трубы:

Схема подключения теплого пола.

L=F/a, где:

  • L – длина трубы, м;
  • а – интервал ее укладки, м;
  • F – площадь поверхности теплого пола, м2.

В примере: 40 м2/0,2 м=200 м. К этой протяженности необходимо прибавить длину труб, которые идут до помещения от распределителя, здесь для примера пусть будет 10 м. Получилось 210 м, что является слишком большим контуром, который будет иметь очень высокое гидравлическое сопротивление. Нужно разделить систему на 2 контура, тогда длина трубы составит 105 м, это максимально допустимое значение. Другой вариант – пересмотреть интервал укладки, увеличить его, тогда материала трубы понадобится меньше, но и отдача теплого пола станет ниже. В результате придется наращивать мощность радиаторов.

Теплый пол расчет мощности

На определение необходимой мощности теплого пола в помещении влияет показатель теплопотерь, для точного определения которых потребуется произвести сложный теплотехнический подсчет по особой методике.

  • При этом учитываются следующие факторы:
  • площадь обогреваемой поверхности, общая площадь помещения;
  • площадь, тип остекления;
  • наличие, площадь, тип, толщина, материал и термическое сопротивление стен и иных ограждающих конструкций;
  • уровень проникновения солнечных лучей в помещение;
  • наличие иных источников тепла, в том числе учитывается тепло, источаемое оборудованием, различными приборами и людьми.

Методика выполнения подобных точных расчетов требует глубоких теоретических знаний и опыта, а потому теплотехнический расчет лучше доверить специалистам.

Ведь только они знают, как рассчитать мощность теплого пола водяного с наименьшей погрешностью и оптимальными параметрами

Особенно это важно при проектировании обогреваемого встроенного отопления в помещениях большой площадью с большой высотой

Укладка и эффективная эксплуатация водяного обогреваемого пола возможна лишь в помещениях с уровнем теплопотерь менее 100 Вт/м². Если теплопотери выше, необходимо принять меры по утеплению помещения с целью снижения потерь тепла.

Однако если проектный инженерный расчет стоит немалых денег, в случае с небольшими помещениями приблизительные расчеты можно провести самостоятельно, приняв 100 Вт/м² за усредненную величину и отправную точку в дальнейших расчетах.

  1. При этом для частного дома принято корректировать усредненный показатель потерь тепла исходя из общей площади строения:
  2. 120 Вт/м² – при площади дома до 150 м²;
  3. 100 Вт/м² – при площади 150-300 м²;
  4. 90 Вт/м² – при площади 300-500 м².
Популярные статьи  Какую трубу выбрать для водоснабжения для дома и квартиры: определяемся с диаметром и материалом

Нагрузка на систему

  • На то, какая будет мощность водяного теплого пола на квадратный метр, влияют такие параметры, создающие нагрузку на систему, определяющие гидравлическое сопротивление и уровень теплоотдачи, как:
  • материал, из которого изготовлены трубы;
  • схема укладки контуров;
  • длина каждого контура;
  • диаметр;
  • расстояние между нитками труб.

Характеристика:

Трубы могут быть медными (отличаются наилучшими теплотехническими и эксплуатационными характеристиками, однако обходятся не дешево и требуют специальных навыков, а также инструмента).

Основных схем укладки контура два: змейкой и улиткой. Первый вариант наиболее прост, но менее эффективен, так как дает неравномерный нагрев пола. Второй более сложен в реализации, но эффективность прогрева на порядок выше.

Площадь, отапливаемая одним контуром, не должна превышать 20 м². Если отапливаемая площадь больше, то целесообразно трубопровод разбить на 2 или более контуров, подключив их к распредколлектору с возможностью регулирования нагрева участков пола.

Общая длина труб одного контура должна быть не больше 90 м. При этом, чем больший выбран диаметр, тем больше расстояние между нитками труб. Как правило, не применяются трубы с диаметром более 16 мм.

Каждый параметр имеет свои коэффициенты для дальнейших расчетов, посмотреть которые можно в справочниках.

Расчет мощности теплоотдачи: калькулятор

Чтобы определить мощность водяного пола, необходимо найти произведение общей площади помещения (м²), разницы температур подачи и обратно поступающей жидкости, и коэффициентами, зависящими от материала труб, напольного покрытия (дерево, линолеум, плитка и т.д.), других элементов системы.

Мощность водяного теплого пола на 1 м², или теплоотдача, не должна превышать уровень теплопотерь, однако не более чем на 25%. В случае слишком малого или слишком большого значения, необходимо произвести перерасчет, выбрав иной диаметр труб и расстояние между нитями контура.

Показатель мощности тем выше, чем больше диаметр выбранных труб, и тем ниже, чем больший шаг задан между нитками. Для экономии времени можно воспользоваться электронными калькуляторами расчета водяного пола или скачать специальную программу.

Расчеты труб для водяного теплого пола (длина, диаметр, шаг и способы укладки и трубы)

Ограниченная длина низконапорного отопительного контура связана эффектом «замкнутой петли», при котором потеря давления превышает 20 кПа (0,2 бара). Увеличение мощности насоса, в данном случае не выход — сопротивление будет возрастать пропорционально увеличению давления.

Теплые водяные полы лучше обустраивать в помещениях, где проживают постоянно, а не пользуются время от времени.

Расчетная длина труб для теплого пола определяется по формуле:

L = (S/a×1,1) + 2c, (м), где

L — длина контура, м;

S — площадь, контура, м²;

a — шаг укладки, м;

1,1 — увеличение размера шага на изгиб (запас);

2c — длина подводящих труб от коллектора до контура, м.

Обратите внимание! Полезная площадь помещения учитывает площадь контура с добавлением половины шага трубы. Схема обустройства теплого водяного пола в бетонной стяжке

Обогревательный контур прокладывают, отступив 0,3 м от стен

Учитывают открытую площадь пола, которая передает равномерный поток излучения. Специалисты не рекомендуют монтировать отопительный контур в местах расстановки мебели. Длительная статическая нагрузка может стать причиной деформации труб

Обогревательный контур прокладывают, отступив 0,3 м от стен. Учитывают открытую площадь пола, которая передает равномерный поток излучения. Специалисты не рекомендуют монтировать отопительный контур в местах расстановки мебели. Длительная статическая нагрузка может стать причиной деформации труб.

При большой площади помещения отопительный контур разбивают на сектора. Основные правила зонирования — соотношение длин сторон 1/2, обогрев площади одного сектора не более 30 м² и соблюдение одинаковых длины и диаметра для цепей одного коллектора.

 Температура теплоносителя в контуре теплого пола зависит от тепловой нагрузки, шага укладки, диаметра труб, толщины стяжки и материала напольного покрытия.

Соотношение длин и диаметров труб контура:

Диаметр, мм Материал трубы Рекомендованная длина контура, м
16 металлопластик 80 ÷ 100
18 сшитый полиэтилен 80 ÷ 120
20 металлопластик 120 ÷ 150

Диаметр и шаг трубной раскладки зависит от тепловой нагрузки, назначения, размера и геометрии комнаты. Зона распространения тепла пропорциональна радиусу трубы. Труба обогревает участок пола в каждую сторону от центра трубы. Сбалансированный шаг труб: Dy 16 мм — 0,16 м; 20 мм — 0,2 м; 26 мм — 0,26 м; 32 мм — 0,32 м.

Конструкция металлопластиковых труб для теплого водяного пола.

В паспортных данных изделий указывают максимальную пропускную способность труб, на основании которой вычисляют линейное изменение давления. Оптимальное значение скорости теплоносителя в трубах водяного отопления 0,15 ÷ 1 м/с.

Зависимость шага от площади и нагрузки сектора:

Диаметр, мм Расстояние по осям (шаг труб), м Оптимальная нагрузка, Вт/м² Общая (или разбитая на участки) полезная площадь помещения, м²
16 0,15 80 ÷ 180 12
20 0,20 50 ÷ 80 16
26 0,25 20
32 0,30 меньше 50 24

Варианты укладки труб: простые, угловые или двойные петли (змейки), спирали (улитки). Для узких коридоров и помещений неправильной формы используют укладку змейкой. Большие площади разбивают на сектора. Допускается комбинированная укладка: в краевой зоне труба выкладывается змейкой, в основной части — улиткой.

Варианты укладки труб водяного теплого пола.

По периметру, ближе к наружной стене и возле оконных проемов, проходит подача контура. Шаг укладки в краевых зонах может быть меньше расстояний между трубами в центральной части комнаты. Подключение усилений краевой зоны необходимо для повышения мощности теплового потока.

Обратите внимание! Загиб труб на 90° в спиральной схеме подключения водяного теплого пола, снижает гидравлическое сопротивление меньше, в сравнении с укладкой петлями (змейкой). В расчетах труб для водяного теплого пола используют диаметры 16, 20, 26, 32 мм

В расчетах труб для водяного теплого пола используют диаметры 16, 20, 26, 32 мм.

Укладка труб водяного теплого пола по спиральной схеме снижает гидравлическое сопротивление.

Для систем теплых водяных полов применяют гофрированный, нержавеющий стальной, медный, металлопластиковый, сшитый полиэтиленовый трубопровод. Гофрировать трубу для теплых полов стали относительно недавно для того, чтобы облегчить монтаж конструкции и сократить расход на поворотные увеличения длины.

Полипропиленовый трубопровод обладает большим радиусом изгиба, поэтому в системах теплых полов применяется редко.

Гофрированная труба из нержавеющей стали для обустройства водяного теплого пола.

Какие факторы следует учитывать?

Для того чтобы произвести все необходимые расчеты, которые помогут определиться с количеством материалов для теплого пола, следует учесть следующее:

суммарная площадь помещения, где будет обустраиваться подогрев пола. Именно от этой цифры и будет зависеть количество контуров в системе;

Как рассчитать площадь комнаты

количество коллекторов

Важно помнить, что каждый контур обогрева может быть подключен только к одному коллектору;

планировка помещений, где обустраивается подогрев;

Варианты схем укладки нагревательного кабеля

  • размеры окон и других мест, где тепло будет теряться. Вид остекления. Типы дверей;
  • сказаться на показателе мощности может и толщина стен дома;
  • влажность воздуха в помещении;
  • расположение мебели и других предметов интерьера в помещении. Под ними теплый пол не укладывается, если он электрический, так как вентиляция будет недостаточной и система может быть повреждена. Да и на сохранности мебели и техники излишний нагрев также может сказаться негативно;
  • назначение помещения, где будет производиться монтаж. В зависимости от этого и выбирается мощность подогрева;
  • другие источники тепла и их мощность.

При расчете теплого пола нужно учитывать многие моменты

Немаловажным может оказаться температурный режим в регионе и необходимость подогрева конкретного помещения, регулировки температуры в нем. На мощность пола значительное влияние может оказать и вид финишного покрытия пола – одни материалы легко пропускают тепловую энергию, другие – хуже.

Схема установки электрических универсальных нагревательных матов для теплого пола

Популярные статьи  Вентилятор в дымоход для улучшения тяги: виды устройств и инструктаж по врезке

Рассчитаем длину контура

При проведении расчётов, по определению количества труб для укладки конструкции — водяной тёплый пол, следует учитывать такие моменты:

  • суммарную площадь всех помещений;
  • количество коллекторов;
  • планировку помещения;
  • размер оконных проёмов и дверей, через которые тепло может выходить;
  • толщину стен;
  • размещение мебели;
  • влажность воздуха;
  • предназначение комнат;
  • наличие других отопительных систем.

Если исходить из среднего показателя, то на 1 м2 потребуется 5 погонных метров трубы, при укладочном шаге 20 см.

Для наиболее точного подсчёта размера трубопровода подойдёт формула:

где:

  • S — площадь комнаты;
  • N — шаг укладки;
  • 1,1 — запас для осуществления поворотов.

К полученным данным следует добавить количество метров от пола до коллекторного шкафа и обратно.

Для наглядности рассмотрим процесс расчёта на примере:

  • площадь комнаты — 15 метров;
  • максимальное расстояние до коллекторного шкафа от пола — 4 метра;
  • расстояние между труб — 0,15 мм;

Ещё один способ вычислить количество трубопровода — отразить схему укладки на миллиметровой бумаге. При этом, нужно обязательно соблюдать масштаб, и учитывать размер помещения.

После отражения всей системы на бумаге, нужно измерить длину всех змеевиков на чертеже при помощи линейки, и умножить данный результат на соответствующий масштаб.

Сшитый полиэтилен

Благодаря современным технологиям, такой, казалось бы, непрочный материал как полиэтилен, удалось сделать пригодным для производства труб. В обычном полиэтилене молекулы углеводорода никак не связаны между собой, а вот в новом материале (PEX, или сшитом полиэтилене) углеводородные молекулы соединены посредством взаимодействия атомов водорода и углерода. Дополнительная обработка под высоким давлением делает материал еще более прочным

Производство сшитой трубы для теплого пола получило распространение лишь недавно, хотя сама технология была разработана примерно 40 лет назад. Новый материал обладает характеристиками, которые не присущи его предшественнику. В частности, сшитый пропилен для теплого пола отличается высокой механической прочностью, то есть не боится царапин и не истирается, устойчив к температурным колебаниям. Главным образом, на свойствах материала сказывается техника и степень его сшивания.

Определяясь, какой сшитый полиэтилен выбрать для теплого пола, стоит обратить внимание на материал со степенью сшивки 65-80 %. Данный показатель будет влиять на прочность и долговечность изделий, но вместе с тем, вырастет и их цена. Правда, излишние расходы на этапе монтажа в дальнейшем окупятся из-за надежности и долгого срока эксплуатации труб.

Правда, излишние расходы на этапе монтажа в дальнейшем окупятся из-за надежности и долгого срока эксплуатации труб.

При малой степени сшивки полиэтилен быстро утратит свои исходные качества, потрескается под влиянием внешних факторов и потребует замены. Однако не менее значимым является способ создания молекулярных связей.

Различают 4 типа сшивки:

  • пероксидный;
  • силановый;
  • азотный;
  • радиационный.

Выбирая, из какой трубы делать теплый пол, присмотритесь к ее маркировке. Наиболее качественным является PEX-a, хотя он и самый дорогостоящий. А вот повышенным спросом пользуются трубы с маркировкой PEX-b, сшитые силановым методом. У них относительно невысокая цена наряду с хорошими эксплуатационными свойствами.

У данного материала есть еще и другие достоинства, в частности:

  • Возможность полноценно работать при температурах от 0 ℃ до 95 ℃.
  • Сшитый полиэтилен начинает плавиться только при температуре в 150 ℃, а горит он при 400 ℃, поэтому с успехом может использоваться в системах теплого пола.
  • Трубам из сшитого полиэтилена присуща так называемая «молекулярная память», то есть после повышения температуры материала любые возможные деформации разглаживаются, а сами изделия принимают исходную форму.
  • Хорошая устойчивость изделий из сшитого полиэтилена к перепадам давления в системах отопления является еще одним аргументом в их пользу в момент принятия решения, какую трубу взять для теплого пола. В зависимости от характеристик такие трубы могут поддерживать давление в 4-10 атмосфер.
  • PEX-трубы отличаются хорошей пластичностью, поэтому даже при многократном изгибе в одном и том же месте они не ломаются.
  • Сшитый полиэтилен является биологически и химически устойчивым. Это значит, что на внутренней поверхности труб не размножаются бактерии и грибок, а сам материал не вступает в реакцию с агрессивной средой и не поддается коррозии.
  • Химический состав сшитого полиэтилена абсолютно безопасен. Он не выделяет токсинов, а в момент горения распадается на углекислый газ и воду.

Рекомендуемые температуры эксплуатации труб из сшитого полиэтилена составляют 0-95 ℃, но на краткое время диапазон может расширяться до -50 — +150 ℃, причем материал не лопнет и останется прочным. Однако такие повышенные нагрузки приводят к сокращению срока службы материала.

Некоторые пользователи путают термостойкие полиэтиленовые трубы с изделиями из PEX. Это некорректно. Действительно, термостойкий полиэтилен способен функционировать при высоких температурных значениях, однако по всем остальным качествам он сильно отстает от сшитого. Трубы PEX способны сопротивляться агрессивным внешним факторам намного дольше, но и цена на них выше. А их монтаж не нуждается в сложном оборудовании и доступен каждому потребителю.

Итак, если вы сомневаетесь, какие трубы нужны для теплого пола, можете смело остановиться на изделиях из сшитого полиэтилена. Более того, их характеристики позволяют применять такие трубы даже для радиаторного отопления и горячего водоснабжения. Единственное ограничение – минимизировать воздействие на материал прямых солнечных лучей, хотя для теплого пола оно не актуально.

Чтобы не повредить внешний антидиффузный слой на трубах, их транспортировку и монтаж следует выполнять очень осторожно. Нарушение целостности защитного покрытия приведет к снижению долговечности трубы из-за попадания кислорода в структуру материала.

Проектирование кабельного подогрева

Максимальная длина контура теплого пола 16 трубой: определяем самостоятельно с помощью калькуляторовГлавными отличиями электрических теплых полов — нагревательные элементы, состоящие из кабелей или кабельных секций. Рассмотрим разновидности и методы расчёта.

Резистивный нагревающий кабель – это нагревательный элемент из одного или двухжильного кабеля в защитном экране, с неизменным сопротивлением, который уложен по площади пола.

Кабель имеет стандартные значения длины, а соответственно сопротивления и вырабатываемого тепла.  Длину кабеля изменять нельзя, это приведёт к изменению тока и нарушению работы.

Удельная мощность и длина

Это мощность одного кв.м теплого пола. Под этот показатель подбирается длина нагревающего электрокабеля.

Например, мощность кабельной системы для правильного подогрева должна быть около 100-150 Вт/м2; если теплый пол планируется использовать как основное отопление, то нужно 150-200 Вт/м2. Если нам нужно подогреть 10 м2, то нужен кабель мощностью 10*100=1000 Вт.

Сколько это метров кабеля?

Это уже будет зависить от его сечения. Чем толще провод, тем, больше его мощность, и тем больше шаг укладки будет при монтаже. Более тонкий провод придется укладывать с меньшим шагом, чтобы соблюсти выбранную удельную мощность, соответственно расход кабеля будет больше.

Для удобства расчетов и укладки продаются электрические ТП в виде матов, свернутых в рулон. Кабель в них уложен змейкой с определенным шагом и зафиксирован. Ширину такого «коврика» изменить нельзя, как правило, она равна 50 см. Получается, что удельную мощность задает производитель, например 130 Вт/м2. Покупателю остается только выбрать подходящую площадь нагревательного элемента из имеющихся в продаже.

Оцените статью
( Пока оценок нет )
Добавить комментарий